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Nearly all theoretical work in geophysical fluid dynamics is based on approximate 
forms of the equations of motion, but the best ground-rules for deriving such 
approximate forms are not clear. Traditionally, scale analysis and global energy 
conservation have been the guiding principles. The existence of analogues of 
Lagrangian potential vorticity conservation has been seen as at least aesthetically 
desirable, but consequent improvements in practical accuracy have not often been 
demonstrated. A simple case study is here offered in order to illuminate these issues. 
The Type 1 quasi-geostrophic model (QG1) is adopted as a reference formulation and 
several approximations to it are examined. They are formally accurate to zeroth or 
first-order in a Burger number B, but may include some higher-order terms and may 
imply analogues of global energy conservation and Lagrangian potential vorticity 
conservation. The approximate forms are all characterized by exclusion of the 
external Rossby mode, and each is related to a certain geostrophic formulation which 
is familiar in dynamical oceanography. The various approximations are assessed by 
examining their behaviour in three test problems which may be treated analytically: 
finite-amplitude internal Rossby wave propagation, zonal flow stability criteria and 
linearized internal free waves on baroclinic zonal flows. Two of the problems yield 
support for the hypothesis that the practical accuracy of an approximation may be 
improved by including higher-order terms in such a way that a potential vorticity 
conservation analogue is implied. The validity of this hypothesis in the QG1 case 
could be further investigated by solving more complicated test problems. Its general 
applicability cannot of course be claimed on the basis of a single case study; but the 
results obtained here afford evidence in its favour. 

1. Introduction 
In meteorology and oceanography the use of approximate forms of the equations 

of rotating fluid motion is widespread. The hydrostatic primitive equations are the 
basis of many numerical weather-forecasting and general circulation models, and 
many different geostrophic formulations are used in modelling and theoretical 
studies. Detailed reviews are given by Phillips (1963), Lorenz (1967), Wiin-Nielsen 
(1968), Gent t McWilliams (1983) and Eliassen (1984). 

The approximate formulations are most easily derived from the complete governing 
equations by a process of straightforward scale analysis. Terms which are small in 
the relevant physical context are simply omitted, and the remnant equations 
constitute the approximate model. An extremely useful by-product of this procedure, 
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at least in the cases that are of interest, is that certain unwanted modes of motion 
are removed, or ‘filtered’ from the original equations; the filtering is usually 
associated with the suppression of a time-derivative term. 

Even when it is lent a cloak of rigour and respectability by the use of power series 
expansion methods, scale analysis seems an uncertain and crude basis for the 
derivation of approximate models. It is not clear that the omission of small terms 
is always justifiable; yet, on the other hand, scale estimates of scalar and vector 
products often exaggerate their magnitudes. Furthermore, the technique is usually 
applied to components of the momentum equation, or to some differentiated form 
of it, and hence may depend on the choice of coordinate system. Nevertheless, scale 
analysis does provide a means of assigning to an approximate model a formal degree 
of accuracy in terms of some small parameter. 

During the late 1950s and early 1960s it became recognized that approximate 
models are more credible if they imply analogues of the conservation properties of 
the original equations. Global conservation properties received particular attention : 
energy, entropy, mass, vorticity and angular momentum budgets were investigated. 
The approach is exemplified by Lorenz’s (1 960) classical study. Lorenz derived a 
hierarchy of geostrophically-balanced models by identifying combinations of ap- 
proximations in the (vertical) vorticity, (horizontal) divergence and thermodynamic 
equations which preserve global energy conservation in the absence of forcing and 
dissipation. (Charney (1962) showed that this hierarchy could also be derived by scale 
analysis. See also Haltiner 1971 chapter 4.) Apart from offering reliable cures for 
global energy drifts in numerical integrations, Lorenz’s method was useful in providing 
grounds for choice among a large number of possible approximations of the 
hydrostatic primitive equations. 

The unapproximated equations do of course also possess important Lagrangian 
conservation properties. Most celebrated of these (Hollmann 1964) is the conservation 
of Ertel’s potential vorticity in frictionless, adiabatic flow. Hoskins (1975) and others 
have pointed out the desirability of some analogous Lagrangian conservation law 
being implied by approximate models. In fact, not all of the well-known approximate 
formulations do possess such analogues. The hydrostatic primitive equations, the 
Type 1 and Type 2 geostrophic models (Phillips 1963) and the f-plane semi-geo- 
strophic equations (Hoskins 1975) all conserve potential vorticity in various modified 
forms, but the balanced models introduced by Lorenz (1960) in general do not. 
Neither do the semi-geostrophic equations iff-plane approximations are abandoned 
(McWilliams & Gent 1980). An important consequence of these deficiencies is that 
the only one of the above approximate formulations that describes potential vorticity 
conservation in subplanetary scale motion on the sphere is the hydrostatic primitive 
model - which implies buoyancy/inertia modes as well as geostrophic modes. 
However, this aspect remained until recently a point of little practical interest since 
no method of deriving improved geostrophically balanced models was known. 

An important advance was made independently by Ripa (1981) and Salmon 
(1982). They showed that Lagrangian conservation of potential vorticity (as well as 
global energy conservation) was related to a symmetry property of the Hamiltonian 
of the original equations. Thus (Salmon 1983) formulations having analogues of both 
conservation properties can be obtained by approximating the Hamiltonian 
consistently and deriving the implied equations of motion. These may be unwieldy 
when written in conventional Eulerian form ; but Salmon’s analysis shows that the 
desire to achieve both energy and potential vorticity conservation in approximate 
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models is not merely a pipedream. Salmon (1985) has applied the technique to the 
problem - noted above - of subplanetary scale geostrophic motion on the sphere. 

A key question, which the emergence of the Hamiltonian theory has made even 
more pressing, is the following: what, if anything, is to be gained by using models 
that possess analogues of the global and Lagrangian conservation properties of the 
original equations ? From an aesthetic viewpoint, such formulations seem unarguably 
superior to non-conservative models of the same formal accuracy. In  the context of 
practical numerical modelling, however, the issue is less clear: it  is not a t  all obvious 
that accuracy of simulation will be improved by using conservative formulations. 
(The same problem arises also as regards the choice of finite representations for 
continuous dynamical equations, but that aspect will not be pursued here.) 

In  the present paper a theoretical case study is reported which attempts to throw 
some light on the question. A familiar dynamical formulation, which itself possesses 
good conservation properties, is adopted as a reference model, and various approxi- 
mate forms of it are posed. Some of these possess energy ( E )  and potential vorticity 
(&) conservation analogues, some possess the former but not the latter, and some 
possess neither. By comparing analytically the behaviour of the various approximate 
forms with the known behaviour of the reference model in a number of problems we 
are able to offer some evidence that &-conserving formulations are in practice more 
accurate than other formulations having the same formal accuracy. 

The reference model is the familiar Type 1 quasi-geostrophic model, now widely 
known as QG1. The approximate versions are all long-wave forms from which the 
external Rossby mode has been filtered by removing a time-derivative term from one 
of the governing equations. In this respect the approximate models bear the same 
relation to QG1 as the hydrostatic primitive equations bear to the complete equations 
and all geostrophic models bear to the hydrostatic primitive equations. 

QG1 is amongst the least accurate and sophisticated of the many formulations 
which attempt to describe nearly-geostrophic motion in the atmosphere and oceans 
(McWilliams & Gent 1980; Gent & McWilliams 1983, 1984; Williams & Yamagata 
1984; Salmon 1985). It is also the most widely studied of these models. However, the 
position of QG1 in the firmament of geostrophic models is of no concern here. It is 
chosen as the reference model for the case study because of its good conservation 
properties and its analytical tractability. The behaviour of the various long-wave 
forms is to be gauged only in relation to that of QG1. 

As is well known, the external Rossby mode is one of the most important features 
of QG1 and of motion on the horizontal scale of the Rossby radius of deformation. 
Its exclusion from the long-wave forms to be studied merely implies that their 
physical applicability is to scales which are much larger than the Rossby radius. The 
long-wave approximations are in fact refinements of a geostrophic formulation which 
is used in dynamical oceanography. This formulation is itself closely related to the 
Type 2 geostrophic model (Phillips 1963). The approximations examined in this paper 
are therefore extensions of a familiar model ; further discussion is given later. 

The conservation properties of QG1 and its treatment of long-wave motion are 
briefly reviewed in 92. In  $3 the long-wave approximations are presented; their 
performance in several test problems is examined in $4. Conclusions and suggestions 
for further work are contained in $5.  
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2. QG1: the reference model 
The adopted QG1 forms of the vorticity and thermodynamic equations are 

a, v v  + JW,  v w  + pa, $ = f o  a, w, (2.1) 

and 
P W  

8, a, $+ J($,  a, $)+- = 0. 
f o  

Here J represents the Jacobian of the bracketed quantities with respect to the zonal 
and latitude Cartesian coordinates z and y: 

J(a,  b)  = a, aa, b-a,  aa, b. 

a indicates partial differentiation with respect to the subscript independent variable, 
and V = S,+ja,, i and j being unit vectors in the x- and y-directions. Geometric 
height z is the vertical coordinate; t = time; w is the vertical velocity component; 
9 is the stream function of the geostrophic flow; fo and fl  are constant mid-latitude 
values of the Coriolis parameter f and a, f respectively ; and N = N(z)  is the reference 
state buoyancy frequency. 

Equations (2.1) and (2.2) describe the free quasi-geostrophic motion of an 
incompressible fluid on a mid-latitude /3-plane. Derivations and conditions for 
validity of QG1 are given by Phillips (1963), Pedlosky (1964, 1979), Gill (1982) and 
others. 

Figure 1 shows the domain of the reference model. It is a channel bounded by rigid 
horizontal surfaces a t  z = 0, H upon which w = 0, and by vertical surfaces a t  
y = 0, L, upon which the normal geostrophic flow a, $ vanishes and the zonal average 
zonal geostrophic flow 8” obeys a, 8, = 0. Cyclic conditions (repeat distance L,) are 
applied in the zonal direction. Subject to these boundary conditions, (2.1) and (2.2) 
imply the global conservation law 

dt j j jEdxdydz  = 0, 

in which the integral extends over 0 < x < L,, 0 < y < L,, 0 < z < H ,  and 

is the energy density per unit mass. 
Also implied by (2.1) and (2.2) is the Lagrangian conservation law 

in which 

Equation (2.5) is analogous to the conservation of Ertel’s potential vorticity in 
inviscid adiabatic flow governed by the unapproximated equations of motion 
(Bretherton 1966; Green 1970; Kuo 1972). Since (2.5) involves only horizontal 
advection, the quantity Q itself is not directly analogous to Ertel’s potential 
vorticity; the analogy is between the two conservation laws, not the conserved 
quantities. However, Q is widely referred to as the quasi-geostrophic potential 
vorticity, or simply the potential vorticity, and we shall follow this usage here. 

Wave solutions of QG1 are easily derived and are well known. It is convenient to 
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FIUURE 1. The assumed Cartesian domain - a channel of width L,, depth H and zonal repeat 
distance L, on a mid-latitude b-plane. The Oxyz coordinate system and the associated unit vectors 
i, j ,  k are also shown. See text for the boundary conditions imposed on the motion. 

distinguish external Rossby modes and internal Rossby modes. The former have 
streamfunction $ independent of height, and hence w = 0 everywhere. The latter 
have $ a function of height, with w = 0 only at nodes. When the zonal mean flow 
is uniform (and equal to U,)  the external modes have 

(2.7) 
sin 

$ = A, cosk (x -co t )  sinly- U ,  y, 

with 

and the internal modes have 

c, = u*-- P 
k2+12’ 

with 

sin mz + = A,. cos k(x - c, t )  sin ly cos (x) - U.,, y, 

“ = ’* - ( k2 + l2 + r2nef ; /N2p)  ’ 
P 

Here A,, A, are arbitrary constants, and 

2nm nn k=- , 1 = -  
L, Lu’ 

(2.10) 

(2.11) 

m, n (and T )  being non-zero integers. 
In  a certain parameter range the longest external modes have much larger relative 

phase speeds than the internal modes of the same horizontal scale. From (2.8)’ (2.10) 
and (2.11) it  follows that Ic,- U,l B Ic,- U,l for m = n = 1 if 

(2.12) 

B is a Burger number based on the channel width L, (assumed 5 I&). The existence 
of this differentiation of long-wave relative phase speeds is the physical basis of our 
study. The approximations of QG1 to be introduced in $3 do not describe the 
fast-moving external modes and are formally applicable to QGl motion characterized 
by slow time evolution and large horizontal scale in a domain which permits B 4 1. 
It is also required that the P-effect be large enough to allow differentiation between 
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Ico-U,I and velocity fluctuations in the fluid. If V is an appropriate horizontal 
velocity amplitude, the condition R = V//3Li < 1 is sufficient. 

According to (2.12), the Burger number B is defined such that its square root is 
the ratio of the Rossby radius of deformation, N H / f o ,  to the horizontal scale L, of 
the motion. ‘Long waves’ in the present context are therefore waves whose horizontal 
scale is substantially greater than N H / f , .  

The conditions B, R 4 1 are amply satisfied by planetary scale motion in the 
Earth’s troposphere. With N2 = s-l, L, = lo7 m, 
V = 15 m s-l and /3 = 1.5 x However, ap- 
proximations to QG1 which are mathematically valid when B < 1 are not strictly 
applicable t o  planetary scales because of the inappropriateness of the /3-plane 
approximation when L, - a (where a is the planetary radius). For strict physical 
validity of the long-wave approximations i t  is required that N H / f o  -4 L, < a. Motion 
obeying these conditions occurs in the oceans, where N H / f ,  is typically of order 
50 km. This type of motion (which also obeys R < 1) is discussed by Gill (1982 p. 
531), and by Pedlosky (1979 p. 402). 

s-~, H = lo4 m, fo = 
m-l s-l, one obtains B = R = 

3. Quasi-linear long-wave approximations to QG1 
3.1. A twofold decomposition of the stream function 

As might be expected, the external Rossby mode can be removed from QG1 by 
separating the height-averaged vorticity equation from (2.1) and setting the local 
time derivative to zero. The chosen decomposition of the stream function $ is 
therefore the twofold form 

$ = $ 1 + $ 2  (3.1) 

where + 1 =  qz (3.2) 

and kCrz = $-qZ. (3.3) 

Throughout this paper the overbar is used to indicate averaging over the domain of 
the associated independent variable or variables (following Green 1970). Thus 
$1( = $l(x, y, t ) )  is the height average of 9, and $z( = $,(x, y, z, t ) )  is the deviation of 
$ from that average. In  a customary terminology, +1 and +2 may be called the 
barotropic and baroclinic components of the stream function. Separations of this type 
are familiar from the work of Wiin-Nielsen (1962), Boville (1980) and others. 

It is convenient t o  define 
J t j  = J ( $ j ,  V2$i). (3.4) 

Jaj represents the advection of the relative vorticity V2$$ by the (non-divergent) 
geostrophic flow vj  which corresponds to +j (v j  = k x W+*, k being unit vertical 
vector). With each Jtj is associated a tracer parameter ntj such that nU appears always 
as nij Jaj .  When ni, = 1 the term Ja, is retained in its usual form, but when nt, = 0 
the term Jti is omitted. Tracer parameters are fundamental to all subsequent 
development in this paper. With the above scheme (2.1) may be separated into 
equations describing the time evolution of V 2 ~ L - i ( i  = 1,2) as: 

(3.5) nl,(a, VZ$1 + JlJ +n2,  Ji2 +pax $1 = 0, 

n2,(atv2$2+ J21)+n12 J 1 2 + n 2 2 ( J 2 2 - J i 2 ) + P a x 1 C . 2  
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In  writing (3.6) the thermodynamic equation (2.2) has been used to substitute for 
the vertical velocity w. No approximation of (2.2) is contemplated, and so tracer 
parameters have not been associated with its constituent terms. 

The tracer scheme used in (3.5), (3.6) is not the most general possible since nij is 
associated with the term a,V2$i as well as with Jt l .  This choice has been made in 
order that the approximate models obtained when nll or n,, is set to zero should 
behave reasonably under zonal Galilean transformation. 

Approximate forms of (3.5), (3.6) may be identified unambiguously by a symbolic 
matrix of the tracer parameters : 

in which each n,, = 0 or 1. Clearly there are 24- 1 = 15 possible approximations to 
QG1 according to the adopted scheme. Of these, 8 have n,, = 0 and hence do not 
imply the external Rossby mode (see below). In  fact, some of the approximations 
having n,, = 0 are not always consistently posed; for if n,, = 0, (3.5) becomes, in the 
zonal average, 

n,,J,,; = 0. (3.8) 

Since there is no assurance from (3.6) that J,: = 0, (3.8) contradicts 3 6 unless 
n,, = 0. All problems involving linearization about a zonal flow obey J,, = 0, and 
it is satisfied in certain other cases too (see $4.1). We shall refer to motion in which 
J ,  = 0 as quasi-linear, and will limit attention in this section to such motion. The 
general case, in which J;: does not necessarily vanish, is discussed further in $5. 

6,. 

3.2. Global energy conservation 

From (3.5), (3.6) and the boundary conditions specified in $2 i t  follows that 

By using the identity 

$c.i J i j + $ j  Jti = v.{[~j$i+ui$jlV2$t1, (3.10) 

it  is readily shown that the volume integral on the right-hand side of (3.9) vanishes 
if n,, = n,,. Hence, if this condition is satisfied, the global energy budget (3.9) is 
analogous to the QG1 form (2.3) whatever the values of TI,,,, n,,. The tracer matrix 
for energy-conserving approximations to QG1 is therefore 

(3.11) 

(in which there are three independent elements) and the energy density is given by 

2E(n,,,n21) = ~ 1 1 ~ ~ ~ 1 ~ 2 + ~ 2 1 ~ ~ $ 2 ~ 2 + ~  f 2  (8, $,),a (3.12) 

Such approximations will be referred to as E-conserving. 
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3.3. Quasi-geostrophic potential vorticity conservation 

Addition of (3.5) and (3.6) gives 

(8, + 0.V) { n,, V2ll.l + n21 V2$2+BY + a, (5% $2)} 

= (n11-n12)J12+ (n21-n22)J22, (3.13) 

in which u = k x  V$ = u,+u,. Thus, if n12 = n,, and n22 = n2, there exists an 
analogue of the QG1 potential vorticity equation (2.5) in terms of 

Q(nI1,n2J = nl1v2llrl +n21V2$-, +BY +az (&az @2). (3.14) 

Such approximations to QG1 will be referred to as Q-conserving. They are identified 
by the tracer matrix 

2 

(3.15) 

in which there are but two independent elements. 
An important feature of (3.11) and (3.15) is that all Q-conserving approximations 

are also E-conserving. This case study cannot therefore illuminate situations in which 
an approximate model possesses an analogue of potential vorticity conservation but 
not an analogue of global energy conservation. Some examples of this type are 
discilssed by Gent & McWilliams (1984). 

3.4. External and internal Rossby modes in the approximate models 
Consider the problem of small-amplitude waves on a uniform zonal flow U,. 
Linearization of (3.5), (3.6) in this case (with P assumed independent of height) gives 

n,,P, + u*axl v2$; +pax$-; = 0, (3.16) 

(3.17) 

(in which the $; are perturbations). External modes of the form 

$; = A, eik(x-ct) sinly, $u"; = 0, (3.18) 

are solutions of (3.16), (3.17) if n,, = 1,  and they then have the correct phase speed 

B c =  u*-- 
k2+12' 

(3.19) 

However, if n,, = 0 it is easily seen that no external mode solutions exist (i.e. A, = 0 
in (3.18)). So, as expected, the external modes are filtered from (3.5), (3.6) by setting 
n,, = 0. This result can be demonstrated for finite amplitude waves also (see 54.1). 
It is well known that external Rossby modes can be removed from QG1 by omitting 
the local time derivative of vorticity from (2.1) (see, for example, Wiin-Nielsen 1961). 
The present analysis shows that the same effect can be achieved by treating the 
height-average form (3.5) alone in this way. 

Internal modes having 

$; = A, eik(z-ct) cos - sinly, $; = 0, (1xHz) (3.20) 
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satisfy (3.16) and (3.17) so long as 

I 

n2,(k2 + Z2) + (r2x2f;/N2H2) * 
c =  u*- (3.21) 

It is notable that nll does not appear in (3.21). So filtering of the external modes can 
be achieved without simultaneous removal of the internal modes. Further, by 
retaining n2, = 1 in (3.6) (and hence in (3.17)) the QG1 phase speeds of the internal 
modes can be preserved unchanged even if the external modes are filtered by setting 
n,, = 0 in (3.5). This result (which can be generalized to finite amplitude, see 54.1) 
is not profound, but it is thought to be new. 

3.5. Two Q-conserving approximations to QGl 
When external modes are removed by setting nll = 0 in ( 3 4 ,  two possible Q- 
conserving formulations may be obtained (depending on the value of nzl) .  It is helpful 
to consider these formulations, and in particular their relation to other published 
dynamicel models. The &-conserving model having nll = a, n21 = b will be referred 
to as ‘model ab’. Thus model 11 is QG1 itself. 

Model 00 is the most drastic approximation within our adopted scheme (since all 
four nt, are zero). Equation (3.5) reduces to 

P a x  $1 = 0, (3.22) 

and (3.6) becomes 

(3.23) 

The energy density and potential vorticity analogues are given by the simple forms 

(3.24) 

and & ( O , O )  = PY+a. ($9z$2) ,  f 2  (3.25) 

(see (3.12) and (3.14)). 
Model 00 is identical with the formulation used in dynamics1 oceanography to 

describe motion on a scale intermediate between the Rossby deformation radius end 
the gyre scale (Gill 1982; Pedlosky 1979). Also, in that it completely neglects relative 
vorticity advection and retains time dependence only through the thermodynamic 
equation (2.2), model 00 is similar to Phillips’ (1963) ‘Type 2’  model of planetary 
geostrophic motion. However, the Type 2 model (as defined by Phillips) involves use 
of spherical geometry, full latitude variation of the Coriolis parameter and special 
treatment of horizontal boundary conditions. See also Bates (1977) and Lynch 
(1979). 

The internal modes (3.20) allowed in model 00 have phase speed 

(3.26) 

This differs from the QG1 value (see (2.10) and (3.21)) and (as noted by Welander 
1961, Wiin-Nielsen 1961 and others) is independent of the horizontal wavenumber 
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(k2  + 12)t. Model 01, in contrast, has internal modes with the correct QG1 phase speeds 
(since n2, = 1)  ; its governing equations are 

E2 +pa, $, = 0, (3.27) 

a,V2$z + J21+ J 2 2  -.r:z+P3, $2 +a, a, (6% $,> + J (  9, + $2, a, ($3, $2)) = 0, 

(3.28) 
and the energy density and potential vorticity analogues are given by 

(3.30) 

Wiin-Nielsen (1961) introduced a modification of the Type 2 model in which the local 
time derivative of the vorticity was omitted but the advection of relative vorticity 
retained. Thus external Rossby modes were still removed, although an apparently 
less drastic approximation had been made. Because it does not preserve invariance 
of the equations under zonal Galilean transformation this approximation has no 
counterpart in the scheme used here. 

There are two approximate models which are E-conserving but not Q-conserving. 
One has n,, = nZ1 = n22 = 0, n12 = 1 ; i t  will be referred to as model EOO. The other 
has n12 = n21 = n22 = 1 ,  nll = 0 and will be designated model EOl. Since it neglects 
only one term from the full QG1 form, model EO1 seems the least severe of the 
approximations which do not imply the external mode. 

3.6. Scale analysis in terms of the Burger number 
Although the preliminary di-nussion at the end of $2 involved a scale consideration 
of external and internal mode phase speeds (and the importance of this should not 
be overlooked), the development of approximations to QG1 given in this section so 
far has not depended on detailed scale analysis. Rather, the approach has been to 
identify a range of possible approximations, and then to examine the conservation 
and wave propagation properties of each. This is considered to be a suitable emphasis. 
However, detailed scale analysis cannot be dispensed with completely because it 
enables a formal degree of accuracy to be ascribed to each approximate model. It 
is also of interest to find whether any of the Q- or E-conserving approximate models 
appear as readily through scale analysis as they do through examination of 
conservation properties. Consider (3.5) and (3.6). It is natural to scale 2 and y by L,, 
t by (L,/ V) (where V is a typical horizontal velocity amplitude) and $2 by VL,. The 
scaling factor for $l is specified as h VLu where h is a non-dimensional parameter to 
be determined later. Other non-dimensional numbers which arise are a Burger 
number B and a Rossby number R defined by 

(3.31) 

(cf. 52). 
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Equations (3.5) and (3.6) may then be written in non-dimensional form as 

BAn,,[a, V2$, + AJ,,] + Bn,, Ji2 + BR-lAa, $, = 0,  (3.32) 

B{n,,[a, v2+, + AJ,J + ~ n , ,  4, + n , , ~ , ,  - Z211 
+ BR-Q, $, +a, C$ $, +J(A@, + $,, $,) = 0. (3.33) 

In  deriving these forms, N has been assumed independent of height. $, and $, in 
(3.32) and (3.33) are non-dimensional, as are the operators a,,a, and V2, their 
dimensional counterparts having been scaled in the obvious way, given the adopted 
scalings of the independent variables. Both (3.32) and (3.33) have been multiplied 
through by B in the derivation from (3.5) and (3.6). 

To order BO, (3.33) reduces to a trivial form unless R is taken to be of order B. 
With this relation (which is consistent with the discussion given in $2), (3.33) becomes 
equivalent, to order BO, to (3.23) of model 00 (so long as A is of order unity or less). 
However, R = O(B) must be applied also in (3.32), which then contains a term in 
a, $, that is of order ABO. Taking A = 1 then implies that (3.32) reduces to 

a,$, = 0, (3.34) 

at leading order (BO). This is consistent with (3.22), of model 00. But (3.34) suggests 
that the leading-order balance in (3.32) is trivial, and hence that A = 1 was an 
inappropriate setting (at least for the scaling of [@,-$TI). The structure of (3.32) 
evidently requires h = B. Such a scaling was used by Pedlosky (1977) in a study of 
amplitude vacillation in a 2-level, /I-plane model. Applying A = B (which still implies 
(3.34) to order BO) as the appropriate setting, (3.32) gives 

(3.35) 

at order B. This is equivalent to (3.27) of model 01. If m,, = 1 (in which case the 
external Rossby mode is retained) terms of order B2 and Bs are retained in (3.32). 

Applying A = B  to (3.33) shows that all terms of order B are retained if 
n2, = n2, = 1 and some terms of order B2 if n12 or nZl = 1. 

All approximations having nzl = n2, = 1 are formally accurate to order B but all 
others only to order unity. Thus models 00 and EOO are accurate to order unity (but 
retain some terms of order B). Models 01 and EO1 are accurate to order B (but retain 
some terms of order B2) .  There is no non-conserving model having n,, = 0 which is 
accurate to order B. 

It is interesting that none of the conserving models 00, E00, 01 and EOl are obvious 
approximations on the basis of scale analysis. (This arises mainly because of our 
requirement that all approximations should be invariant under zonal Galilean 
transformation.) The retention of terms of a higher order than the formal accuracy 
of an approximation is a feature of various published geostrophic formulations. For 
example, in the semi-geostrophic model (Hoskins 1975), geostrophic advection of 
ageostrophic momentum is neglected, but ageostrophic advection of geostrophic 
momentum is retained (see the discussion following Fjrartoft 1962). It is also 
characteristic of the global geostrophic models proposed by Salmon (1983,1985). The 
hope in each case must be that the retention of some higher-order terms, but not all, 
leads to improved accuracy in practice because conservation properties are improved, 
either because a conservation analogue exists where otherwise there would be none, 
or because the conservation analogue is itself rendered more realistic. 

J:, + BR-'a, $, = 0,  
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w, = 0 

*i 

z = H  

iH 

w, = 0 I r = O  

FIQTJRE 2. Arrangement of variables and constants in the two-level model. 

3.7. Two-level models 
The analysis given in $53.1-3.6 for the QG1 model with continuous vertical structure 
can easily be applied to a two-level model based on (2.1) and (2.2) (subject to the 
usual boundary conditions). Figure 2 shows the assumed arrangement of levels and 
variables. By writing (2.1) and (2.2) in standard finite-difference forms and 
introducing tracer parameters nU as before, the two-level analogues of (3.5), (3.6) 
may be obtained as : 

n11[~,V2$1+J111+n22J22+B~z $1 = 0, (3.36) 

n21[~,V2$2+J211+n12J1,+B~z$2 = P2Pt $2+J($1,$2)1. (3.37) 

Here $l and $2 are the barotropic and baroclinic stream functions defined by 

(3.38) 

in analogy with the continuous QG1 case, and p2 = 8fi/N2H2 (Na being evaluated 
at z = 4H). Equations (3.36), (3.37) are slightly simpler than (3.5), (3.6) because the 
Jacobian terms in the two-level model are identically equal to their height averages. 

It is readily shown that the tracer matrix {n,,} of (3.36), (3.37) behaves exactly as 
for the continuous model. Thus (3.7) reduces to (3.11) for E-conserving approxima- 
tions, and to (3.15) for approximations that are also Q-conserving. The external mode 
is removed by setting n,, = 0, and the phase speed of the single internal mode 
preserved by retaining nZ1 = 1 (but is altered if n21 = 0). Fully conserving approxi- 
mate models 00 and 01 and energy conserT;ing models EOO and EO1 may be defined 
in analogy to the continuous case. Finally, it  can be shown that the number of possible 
approximations, the requirement of quasi-linearity (J.2 = 0) if n22 = 1 and nll = 0, 
and the suggestions of scale analysis are the same as before. 

4. Behaviour of the quasi-linear approximations in specific problems 
4.1. Finite-amplitude Rossby waves and zonal mean flows 

The QG1 potential vorticity equation (2.5) possesses finite-amplitude solutions 
having 

where c is a real constant and F a single-valued function. A particular case of (4.1), 
which arises when F( ) = - K ~ (  ), is the family of Rossby waves and zonal flows having 

a, = +az, Q = F ( $ + c ~ ) ,  (4.1) 
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the same total wavenumber K ;  a uniform zonal flow U ,  is also permitted (Kuo 1959, 
1973; Mitchell & Derome 1983). Assuming for simplicity that N2 is independent of 
height, the solutions take the form 

in which the aklr are arbitrary real constants, r = 0, 1, . . . , and the sum extends only 
over harmonic elements for which 

r2n2fi 
N2H2 k2+Z2+- = K ~ ,  

takes the same value. The phase speed c is given by the familiar relation 

B c = u,--. 
K2 

(4.3) 

(4.4) 

The vertical structure functions in (4.2) have been chosen so that the boundary 
conditions w = 0 at z = 0, H are satisfied. If the horizontal boundary conditions 
adopted in $2 are also applied, the number of harmonic components which can 
contribute to (4.2) is severely limited, often to two components. However, if the 
domain scale ratio (L,/L,) and the Burger number B take certain special values, then 
several different components may be included in (4.2). An example (of many 
possibilities) is the form 

+c  sin [ 2n(z-ct) L, ] sin(??)+dcos[ sin 2n(z-cct) L, ]sin@ c o s G ) ,  (4.5) 
cos 

whose harmonic components each have the same total wavenumber if B = + and 
L,/L,=2/2/3 (a, b, c and d are arbitrary real constants). This fmite-amplitude 
solution of the inviscid, adiabatic QG1 model is a meagre generalization of one of 
those used by White (19863) to illustrate certain consequences of wave/mean flow 
non-interaction. Given that such multi-component solutions of .QG1 do exist even 
when the usual boundary conditions in z and y are imposed, a good test of the various 
approximate models introduced in $3 is their treatment of solutions of the form of 
(4.2). 

Cases in which U ,  = 0 may be considered without loss of generality. The solutions 
(4.2) are readily decomposed into barotropic ( $ 1 )  and baroclinic components, 
and application of (4.3) shows that the quasi-linearity condition, J .  = 0, is obeyed. 
Further, (3.5) is satisfied if 

a , $ 1 ( B + n l , ~ 2 ~ )  = 0. (4.6) 

Approximations having lzll = 0 must therefore have a, $l = 0. Thus external Rossby 
modes are disallowed if n,, = 0, although a barotropic harmonic zonal flow 
U, = - ay $: is permitted. 

Consideration of (3.6) leads to  the more complicated condition 

a,92(B+n21K2c+ ( n , , - n 2 , ) K ~ ~ , ~  
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1212 

1 
0 
1 
0 
1 
0 
1 
0 

Order of 
formal Allowed Phase 

n21 1222 Remarks accuracy components speed 

Correct 

Approx. 

1 1 Model EO1 B uo7 $2 

1 1 Model 01 B $2 

1 0 Non-conserving 1 Uo, +2[SJfI 

1 0 Non-conserving 1 $-,[SKI 

$2[SJfl 

0 1 Non-conserving } 
0 1 Non-conserving 
0 0 Model E00 
0 0 Model 00 

TABLE 1. Treatment of finite-amplitude internal Rossby modes by 8 approximate forms of QG1 
Notes. (a) Uo is a barotropic zonal flow element. ( b )  yk2 is a superposition of internal Rossby modes 
and baroclinic zonal flows each having the same total wavenumber. (c) $-,[SW indicates either a 
single internal Rossby mode (or baroclinic zonal flow) or a superposition of these elements having 
the same vertical wavenumber (as well as the same total wavenumber). (a!) The correct phase speed 
is that given by (4.4); the approximate phase speed is that given by (3.26). 

in the case n,, = 0. Equation (4.7) involves the tracers n,,, n,, and n,,. Table 1 
summarizes the restrictions on the solutions (4.2) which are imposed by (4.7) in each 
of the eight possible tracer combinations. Since external modes are disallowed when 
n,, = 0, the best that can be achieved is retention of the barotropic zonal flow U, 
and all internal modes (including baroclinic zonal flows) with the phase speed (4.4) 
preserved. Table 1 is arranged as a 'league table' of approximations. In the case 
nI2 = n,, = n22 = 1, which is the E-conserving model EO1, the best conceivable 
behaviour is achieved. The &-conserving model 01 runs a very close second: baroclinic 
components are allowed without restriction, and the phase speed (4.4) is preserved, 
but the barotropic zonal flow U, is not allowed. All other approximations (which are 
formally accurate only to order unity) fall short in more serious ways. Thus, as table 
1 shows, phase speeds are altered in some cases, and $, is restricted to consist of only 
a single component or of components having the same vertical wavenumber (as well 
as the same total wavenumber). 

Since model EO1 performs marginally better than model 01, &-conservation does 
not lead in this problem to better results for order B approximations. Of the six 
formulations which are formally accurate only to order unity, models 00 and EOO are 
amongst the four giving the worst behaviour: better results are given by two 
non-conserving approximations. However, all the order-unity approximations have 
serious deficiencies in their performance (see table l ) ,  and models 00 and EOO are 
amongst the most drastic approximations as regards the number of terms omitted 
from the QG1 forms. 

4.2. Zonal flow stability criteria 
Zonal flow stability problems can be investigated via (3.5) and (3.6) by resolving both 
mean flow ux and perturbation $' into their barotropic and baroclinic elements and 
linearizing in the usual way. With 

and 
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(3.5) and (3.6) give 

(a, + a2 a,) 9’ + a, &a, 9’ = E .  (4.8) 

Here the perturbation potential vorticity q’ and mean potential vorticity gradient 
a, Q are given by 

q’ = n,, VZ$; + n21 ~296 +a, (5 a, $;), (4.9) 

(4.10) 

and the quantity E takes the form 

In the QG1 problem nU = 1; q’ and 8,Q then reduce to their usual forms, and E 

vanishes. E also vanishes for all Q-conserving approximations to QG1, but not for 
E-conserving or non-conserving forms. 

Stability criteria can be derived from (4.8) by applying familiar manipulations. 
Consider first the cast of stability to wave mode solutions of the form 

it then follows from (4.8)-(4.10) and the boundary conditions 

1 
(a,+ uxa,)a,~;-a, vza,w = o at  z = ~ , H , J  

F,(y = 0) = F,(y = L,) = 0 (i = 1,2),  

that 

(4.12) 

(4.13) 

(4.14) 

By considering the real and imaginary parts of (4.15), necessary conditions for 
instability to wave modes may be obtained for the Q-conserving models (E“  = 0). These 
conditions are similar to those obtained for QG1 by Pedlosky (1964), but here apply 
also to models 00 and 01 (in terms of the appropriate potential vorticity gradients 
as defined by (4.10)). But if k $; 0 (E-conserving and non-conserving forms) no useful 
simplification occurs in (4.15), and no stability criterion can be deduced. 
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For general non-axisymmetric perturbations it follows from (4.8)-(4.10) that 

Sufficient conditions for stability to such perturbations can be derived from (4.16) 
in the case of &-conserving models (s = 0). These conditions involve the potential 
vorticity gradients defined by (4.10) and are similar to the conditions obtainable for 
QG1 (see Blumen 1978). For all other approximations (including E-conserving forms) 
E =l= 0 ,  and usual stability criteria are not forthcoming. 

These results provide evidence that, in some problems at least, &-conserving 
approximations are superior to E-conserving and non-conserving approximations of 
the same formal accuracy. Further evidence could be sought by solving some stability 
problems explicitly. In  cases which are of interest, however, the analytical 
complications are considerable; such problems are set aside for future work. The 
two-level model provides a more tractable basis for simple analytical study. 

4.3. Linearized free waves in two-level models 

Consider the case of free waves on the baroclinic zonal flow 0; = U , - A U ,  
0: = U ,  + AU (see figure 2). The components of the total stream function are 

(4.17) 

in which the $; are small perturbations. The linearized forms of (3.36), (3.37) have 
non-trivial wave mode solutions of the form 

$; = A, eik(z-Ct) sin ly, (4.18) 
so long as 

(4.19) 
In (4.19) 

(Y + n11 P") (Y + + n21p21) + n22 p2(8 - n,,p2) = 0. 

(4.20) 

Thus p ,  y and X are respectively non-dimensional wavenumber, @-parameter and 
complex phase speed. In the case of QG1 (nil = l) ,  (4.19) is quadratic in X, and for 
small values of the wavenumber p one of the solutions is the two-level version of an 
internal Rossby mode on a baroclinic zonal mean flow. This solution has 

4096 x =x + - -  - [ 1 + 1  0P 2 (p --1 ) -1 64P (: --1 ) +L 512p ( --1 y2  ) +0(pS)]. (4.21) 

The other QG1 solution of (4.19) is the two-level version of an external Rossby mode 
on a baroclinic zonal mean flow. When n,, = 0 this solution (X-) is disallowed, and 
(4.19) reduces to a linear equation: 

(4.22) 

According to (4.22), Xis always real. Thus removal of the external Rossby mode from 
the two-level QG1 model simultaneously annihilates baroclinic instability. (An 
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A12 

0 
1 
1 
0 
1 
0 
1 
0 

1281 

1 
1 
1 
1 
0 
0 
0 
0 

1228 

1 
1 
0 
0 
1 
1 
0 
0 

Remarks 

Model 01 
Model EO1 
Non-conserving 
Non-conserving 
Non-conserving 
Non-conserving 
Model EOO 
Model 00 I 

Order of Accuracy of 
formal phase speed 

accuracy X 

B 0(P4) 
B O W )  
\ 

TABLE 2. Treatment of phase speeds of small-amplitude internal Rossby modes on a simple 
two-level baroclinic flow by 8 approximate forms of QG1 

analogous result does not hold for the continuous vertical structure model (3.5), (3.6) : 
the long wave instabilities described by Green (1960) are still present. See, for 
example, Lynch 1979.) 

However, our concern here is not with baroclinic instability but with the extent 
to which, in the various approximations, (4.22) reproduces the X, solution (4.21) of 
the QG1 problem, Results are summarized in table 2, which is again drawn up in 
'league table' form. Clear winner is model 01, the Q-conserving form having n12 = 0 
and n,, = n,, = 1. In this case 

which reproduces (4.21) to order p4 .  Runner up is model EO1 (n,, = n,, = n,, = 1). 
This gives 

x = -j2+P2(8-P2) = - i y  [ 1 ++p2 (7 - 1)-&p4 (F- 1) + 0(p6)], (4.24) 
Y (8 + P 2 )  

which follows (4.21) to order p 2 .  All other possible combinations of nI2, n,, and n22 
give X ,  correct to order 1 only. Thus the &-conserving model 01 is to be preferred 
to the E-conserving model EO1 for the accuracy it gives in this problem ; and models 
01 and EO1 are both to be preferred to all models having lower formal accuracy. 
Examination of the amplitude ratio AJA,  in the various cases gives less clear-cut 
results. The order-B models 01 and EO1 give the ratio correct to order p 2 ,  but so also 
do the two non-conserving, order unity approximations having n,, = 1. All other 
approximations give A ,  = 0. 

Other problems which can be easily examined in the two-level formulation include 
those of steady-state linearized responses to topographic and diabatic forcing. Rather 
surprisingly, however, no clear discrimination between the various conserving and 
non-conserving approximate models emerges in these steady-state cases. The two 
order-B (conserving) models perform equally well, and in all respects at least as well 
as the order-unity models. The two order-unity, conserving models (00 and EOO) are 
inferior to certain non-conserving models in some respects, but no single model having 
the same formal accuracy performs uniformly better. Details are given in White 
(1986a). 
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5. Discussion 
In the present state of knowledge, the relative merits of various conserving and 

non-conserving models in geophysical fluid dynamics can be firmly established only 
by conducting extensive series of numerical integrations and intercomparisons : 
general theoretical results are, as yet, lacking. This paper has described a case study, 
whose results may suggest some wider conclusions. Of course, by its very nature a 
case study cannot give universal results, but useful evidence for or against general 
hypotheses may accrue. The familiar QG1 model has been taken as a reference 
formulation, and the behaviour of various long-wave approximations examined 
analytically. 

The long-wave approximations to QG1 may be categorized according to their 
formal accuracy in terms of the Burger number B as well as by their conservation 
properties. Of approximations having order-B formal accuracy, a &-conserving form 
has been found to give better results than an E-conserving form in two of the problems 
studied. The E-conserving form gives a marginally better performance than the 
&-conserving form in the remaining problem. Within the adopted analytical frame- 
work there exists no non-conserving approximation that is accurate to order B, and 
hence it is not possible in this case to discriminate between conserving and 
non-conserving models. Approximations which are formally accurate only to order 
unity may however be &-conserving, E-conserving or non-conserving. The Q- 
conserving forms yield zonal flow stability criteria but the others do not. In the other 
two problems studied, the E- and &-conserving, order-unity approximations give no 
better behaviour than the non-conserving ones, and in some cases they actually give 
worse behaviour. No single order-unity, non-conserving model is uniformly better 
than the E- and &-conserving forms, however; and it should be borne in mind that 
these conserving forms are amongst the most drastic approximations as regards the 
number of terms omitted from the governing QG1 equations. A clear, and expected, 
result is that order-B approximations are in practice better than (or at  least as good 
as) order unity approximations. 

The Q- and E-conserving models which have order-B formal accuracy retain some 
terms of order B2. The results therefore provide support for the hypothesis that the 
practical accuracy of an approximate model may be increased by including higher- 
order terms in such a way that the conservation properties of the model are improved. 
The suggestion is strengthened by the fact that the order-B, &-conserving model 
retains one term fewer than does the corresponding E-conserving model. 

Various extensions of this study could be made in order to investigate its 
suggestions farther. It has been noted that some of the approximate long-wave 
models are consistently posed only for motion which is in a certain sense quasi-linear, 
and attention has been limited to such cases here (see (3.8)). This restriction may be 
relaxed by adopting a threefold decomposition of the streamfunction whereby the 
height average part is sub-divided into its zonal average and the departure from 
that average. Nine tracer coefficients may then be introduced and the development 
of $ 3  paralleled in every important respect. Details are given in White (1986a). An 
advantageous feature is that the class of order-B models now includes non-conserving 
as well as &-conserving and E-conserving forms. Thus it should be possible to use 
the threefold problem to discriminate between these different forms at order B, which 
is not possible in the twofold case (see above). However, test problems which can 
realize this possibility have not yet been devised. As might be expected, ambiguities 
arise when the problems considered in ss4.1 and 4.3 are tackled. For example, the 
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finite-amplitude Rossby-wave problem leads to conditions involving only four of the 
nine nt,, and it turns out that the behaviour deduced for any given &-conserving 
model will also be exhibited by a number of E-conserving and non-conserving models. 
Nevertheless, it can be shown that only @conserving approximations give analogues 
of the QG1 stability criteria. Test problems which might give similarly unambiguous 
results include the following : the baroclinic instability of zonal flows having 
meridional as well as vertical shear ; finite-amplitude motion forced by topography 
and diabatic heating (Derome 1984) ; the triad instability of baroclinic Rossby waves ; 
and conditions for the existence of smooth solutions (Bennett & Kloeden 1981). Other 
extensions also seem worth pursuing. Amongst various refinements of the stream 
function decomposition method would be application to the case in which no rigid 
upper boundary is present, and to the non-Doppler quasi-geostrophic equations 
(White 1982). Finally, model 01 seems worthy of further investigations as a model 
of intermediate scale motion in the oceans (see $3.5), independent of the general 
approximation problem. 

I am grateful to Dr J. S. A. Green for introducing me to the notion of tracer 
parameters, and to Dr R. Hide for his support and encouragement of the work. I wish 
to thank Dr J. C. Marshall and Dr G. J. Shutts, and anonymous reviewers, for their 
helpful comments and criticism. 
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